Silvaco simulation studies of primary BPW and nested well structures

Michelle Salvador

Under the mentorship of Grzegorz Deptuch and Farah Khalid

SIST Fermilab
The University of Texas at El Paso

Silicon Detectors

Intercryostat

http://www-cdf.fnal.gov/cdfphotos/dcp_0723.jpg

Same concept as commercial cameras

- Multipixel
- Silicon detectors reside at the center of experiments

General Silicon Detectors

http://ars.sciencedirect.com/content/image/1-s2.0-S0959440X07001212-gr1.jpg

- -Consist of two separate structures joined through solder bump
- -Detector and Pixel readout
- -Separated through layers of metal

(silicon on insulator) SOIPIX

http://legacy.kek.jp/intra-e/feature/2010/pdf/DetectorSOI.pdf

-photons come in and generate charge example to generate in

Si energy needed 3.6 ev X-ray 6 Kev

$$\approx \frac{6kev}{3.6ev} \approx 1667e^{-}$$

-charge is detected at p+ well and amplified

Primary BPW and Nested Well Structures

widely used

Process Simulation

Predicts physical outcomes in structure fabrication

Device Simulation
 Predictions in the
 Structure's electrical
 characteristic

Important to define Mesh and Parameters well in Silvaco!!

-Balance between accuracy and efficiency

Primary BPW Structure

Substrate

- -Change BPW width (2um-20um)
- -Investigate amount of capacitance and charge injected due to interference

C_B

 Capacitance between pwella1 and die pad (substrate) electrodes

C_P

 Capacitance between aggressor (interference) and pwella1 electrodes

Q P

 Charge accumulation at Pwella1 electrode

Variables:

- *BPW Width
- *V_dp (voltage applied at substrate)

Results C B Capacitance across Pwella1 and Substrate electrodes

- Direct correlation with increase of BPW width
- BPW acts as capacitive plate
- Minimum change due to applied die pad voltage

$$C = \varepsilon_r \varepsilon_0 \frac{A}{d}$$

C_P Capacitance across Pwella1 and Interference electrodes

- -Increment in capacitance as BPW widens
- -Saturates when bpw reaches Interference electrode

C=Q/V implies charge injected by Interference will reach a maximum value after reaching aggressor

$$C = \varepsilon_r \varepsilon_0 \frac{A}{d}$$

Q_P Charge accumulated at Pwella1

Maximum charge injected saturation as BPW reaches interference electrode

~ - 2.5e-17 maximum charge

$$\approx \frac{-2.5*10^{-17} q / \mu m}{1.6*10^{-19} q / e^{-}} \approx 156e^{-} / \mu m$$

Nested Well Structure

-Observe electrical characteristics as BNW dosing and energy of implantation changed

		Dose				
	Structure	1e12 cm-2	5e12 cm-2		1e13 cm-2	
Energy	220 Kev	1		4		7
	300 Kev	2		5		8
	380 Kev	3		6		9

Resistance acrossNwella1 Nwella2

R_P

Resistance acrossPwella1 Pwella2

		Dose					
	Structure	1e12 cm-2		5e12 cm-2		1e13 cm-2	
Energy	220 Kev		1		4		7
	300 Kev		2		5		8
	380 Kev	:	3		6		9

- -Shallow and lower concentration produces higher resistance across N electrodes
- -Here shown for 2D cross section simulation

-Shows independence of R_N to changes in V_dp , isolation

Capacitive Coupling

— Si N (40key @ 1e12cm⁻²) P

C_N

Capacitance across
 Nwella1 and Aggressor

 C_P

Capacitance acrossPwella1 and Aggressor

C_W

Pwella1 and Nwella1

C_B

Pwella1 and Substrate

BNW dose and energy Increment effect

- -Capacitance increase for Inter>N1 decrease for Inter>P1
- -Capacitance Inter>P1 lower when compared to primary BPW
- -Less interaction from interference to pwella1, readout electronics

Future Work

3D structures

compare observed 2D characteristics with 3D structure simulations

<u>Prepare files for ease of future studies</u>

Documentation

Shell script – "semi-automated structure tester"


```
*Transient_all.sh (/asic/projects2010/Silvaco_M/simple_BPW_OnePix_1/Experiment_Creation_Ground) - gedit
<u>File Edit View Search Tools Documents Help</u>
         ဍ 🖫 | 🎂 | 🦠 🦠 | 🖫 🖟 | 🖺 🚱
New Open Save Print... Undo Redo Cut Copy Paste Find Replace
★Transient all.sh x
         if [ $dp == 05 ]
                 ##run the structure changer here
                         CurrentStruc=1
                         while [ $CurrentStruc -lt $num_struc ] #while CurrentStruc<11</pre>
                                  ##run the file here
echo "i ran here 1 Vb $Vb dp $dp struc $b";
                                  id=`expr $dp + $Vb \\* 100 + $CurrentStruc \\* 10000`
                                  sleep 30
                                  deckbuild -run -as -ascii Transient experiment.in -
outfile SBPW_ONEP_structure_$id.log &
                                  wait $!
                                  #display the current state (or the file that you ran) sed '3q;d' Transient_experiment.in
                                  b=`expr $CurrentStruc + 1
                                  # the file is changed here
                                  #This will be the future file that will be #run
                                  sed -i 's/structure'$CurrentStruc'/structure'$b'/g
Transient_experiment.in
                                  CurrentStruc=`expr $CurrentStruc + 1`
                                  #sed '3q;d' Transient_experiment.in
                          done
                 #(that also #runs the programs)
                 sed -i 's/structurel/structurel/g' Transient_experiment.in
                 sed -i 's/V1=.5/V1=2/g' Transient_experiment.in
                 sed -i 's/dp 05/dp 02/g' Transient experiment.in
                 dp=`head -2 Transient_experiment.in | cut -c21-22`
         elif [ $dp == 02 ]
                 ##run the structure changer here
                         CurrentStruc=1
                         while [ $CurrentStruc -lt $num struc ] #while CurrentStruc<10</pre>
```